Surface Emitting Devices Based on a Semiconductor Coupled Multilayer Cavity for Novel Terahertz Light Sources

نویسندگان

  • Takahiro Kitada
  • Hiroto Ota
  • Xiangmeng Lu
  • Naoto Kumagai
  • Toshiro Isu
چکیده

Compact and room-temperature operable terahertz emitting devices have been proposed using a semiconductor coupled multilayer cavity that consists of two functional cavity layers and three distributed Bragg reflector (DBR) multilayers. Two cavity modes with an optical frequency difference in the terahertz region are realized since two cavities are coupled by the intermediate DBR multilayer. In the proposed device, one cavity is used as the active layer for two-color lasing in the near-infrared region by current injection and the other is used as the second-order nonlinear optical medium for difference-frequency generation of the two-color fundamental laser light. The control of the nonlinear polarization by face-to-face bonding of two epitaxial wafers with different orientations is quite effective to achieve bright terahertz emission from the coupled cavity. In this study, two-color emission by optical excitation was measured for the waferbonded GaAs/AlGaAs coupled multilayer cavity containing self-assembled InAs quantum dots (QDs). We found that optical loss at the bonding interface strongly affects the two-color emission characteristics when the bonding was performed in the middle of the intermediate DBR multilayer. The effect was almost eliminated when the bonding position was carefully chosen by considering electric field distributions of the two modes. We also fabricated the current-injection type devices using the wafer-bonded coupled multilayer cavities. An assemble of self-assembled QDs is considered to be desirable as the optical gain medium because of the discrete nature of the electronic states and the relatively wide gain spectrum due to the inhomogeneous size distribution. The gain was, however, insufficient for two-color lasing even when the nine QD layers were used. Substituting two types of InGaAs multiple quantum wells (MQWs) for the QDs, we were able to demonstrate two-color lasing of the device when the gain peaks of MQWs were tuned to the cavity modes by lowering the operating temperature. key words: coupled multilayer cavity, two-color lasing, frequency conversion, terahertz source

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation

Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most pow...

متن کامل

Vertical cavity surface emitting terahertz laser.

Vertical cavity surface emitting terahertz lasers can be realized in conventional semiconductor microcavities with embedded quantum wells in the strong coupling regime. The cavity is to be pumped optically at half the frequency of the 2p exciton state. Once a threshold population of 2p excitons is achieved, a stimulated terahertz transition populates the lower exciton-polariton branch, and the ...

متن کامل

Broadly tunable terahertz generation in mid-infrared quantum cascade lasers.

Room temperature, broadly tunable, electrically pumped semiconductor sources in the terahertz spectral range, similar in operation simplicity to diode lasers, are highly desired for applications. An emerging technology in this area are sources based on intracavity difference-frequency generation in dual-wavelength mid-infrared quantum cascade lasers. Here we report terahertz quantum cascade las...

متن کامل

Influences of Device Architectures on Characteristics of Organic Light-Emitting Devices Incorporating Ambipolar Blue-Emitting Ter(9,9-diarylfluorenes)

In this article, we report the studies of various device architectures of organic lightemitting devices (OLEDs) incorporating highly efficient blue-emitting and ambipolar carriertransport ter(9,9-diarylfluorene)s, and their influences on device characteristics. The device structures investigated include single-layer devices and multilayer heterostructure devices employing the terfluorene as one...

متن کامل

Thin-film Encapsulation of Organic Light-Emitting Diodes Using Single and Multilayer Structures of MgF2, YF3 and ZnS

In this research, the lifetime of green organic light emitting diodes (OLEDs) is studied using four passivation layers. To encapsulate the OLEDs, MgF2, YF3, composed of alternating MgF2/ZnS and YF3/ZnS layers were grown by thermal vacuum deposition. Measurements show that the device lifetime is significantly improved by using YF3 and ZnS as passivation layers. However, diodes encapsulated by Mg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 100-C  شماره 

صفحات  -

تاریخ انتشار 2017